Образование » Операция над множествами как основа обучения арифметическим действиям над целыми неотрицательными числами

Операция над множествами как основа обучения арифметическим действиям над целыми неотрицательными числами

Велико значение математики в повседневной жизни человека. Без счета, без умения правильно складывать, вычитать, умножить и делить числа немыслимо развитие человеческого общества. Четыре арифметических действия, правила устных и письменных вычислений изучаются, начиная с начальных классов, а устный счет сейчас предлагается чуть ли не с пеленок.

В настоящее время в связи с дифференциацией процесса обучения, введением профильных образовательных систем актуальной становится проблема разработки соответствующих программ обучения. Существующие альтернативные программы и учебники по математике для начальной школы не полностью удовлетворяют потребностям не только специализированной начальной школы, но и обычной системы начального образования. Содержание этих программ во многом устарело, оно не учитывает тех, безусловно, интересных эффективных наработок в области педагогики, психологии и частных методик, которые уже вошли в практику многих учителей. В связи с этим представляется необходимой разработка усовершенствованных вариантов альтернативных программ по математике с учетом этих наработок. Сознательное обучение учащихся по любому предмету и в частности по математике, возможно тогда, когда обучение опирается на соответствующие жизненные наблюдения детей. Накопление собственного опыта происходит при непосредственном наблюдении и восприятии мира. Множество – неопределяемое, но в то же время важное понятие в математике. При изучении математики учителя начальных классов часто обращаются и используют элементы множеств. Фактически наглядное обучение должно способствовать движению мысли от жизненных наблюдений к существенности изучаемого понятия.

Если учесть, что дети мыслят формами, красками предмета и ощущениями, то использование элементов множеств просто необходимо для обучения детей в начальных классах. Еще Я.А. Коменский, И.Г. Песталоцци, К.Д. Ушинский подчеркивали чрезвычайно важную роль наглядности (именно использования элементов множества при обучении арифметическим действиям). Использование элементов множества, как счетный материал помогает достижению важнейшей цели обучения – научить детей считать.

Математика - это наука о количественных отношениях и пространственных формах действительного мира. Считается, что чем богаче представление детей о количественных и пространственных отношениях реальных предметов, тем легче им будет в дальнейшем перейти от этих представлений к математическим понятиям. Применение элементов множества способствует развитию логического мышления и речи детей: помогает перейти к обобщениям, которые затем применяются на практике, формируют убежденность в истинности знаний. Также его продуктивное использование в обучении всегда способствует и стимулирует активную мыслительную деятельность, развивает познавательную активность, наблюдательность; снижает утомляемость, способствует поддержке непроизвольного внимания детей. Элементы множества является исходным материалом для формирования математических понятий. Все существующие ныне альтернативные системы обучения опираются на теоретико-множественный подход при формировании понятия числа и арифметических действий на предметный счет. Предметный счет повышает интерес к знаниям, делают более легким процесс их усвоения, поддерживают внимание ребенка.

Использование элементов множества должно быть подчинено задаче постепенного перехода от конкретного к абстрактному. Предметное преподавание неизбежно приводило к индуктивным обобщениям, при которых дети обычно активны. Этот способ обучения соответствует обучению в начальных классах. Формирование умения считать, навыков решения арифметических действий у младших школьников является одной из сложнейших задач учителя. Учителю нужно совершенно отчетливо представлять себе уровень, на котором должен быть усвоен каждый из вопросов умения считать. Связи с этим представляется целесообразным конкретизировать требования, которые могут быть предъявлены к учащимся к концу изучения основных тем программы («Десяток», «Сотня», «Тысяча», «Многозначные числа»). Показать, что же именно должны знать и уметь дети, какими навыками они должны овладеть в ходе работы над темами. Исходя из всего сказанного можно сказать, что при обучении арифметическим действиям в начальных классах обязательным условием является необходимое использование элементов множества, т.е. предметного счета. Без предметного преподавания детей обучать невозможно и нельзя.

Существующие различные подходы усложняют изучение иррациональное использование элементов множества при обучении математике, в частности при формировании понятия числа и раскрытия конкретных смыслов арифметических действий. Поэтому возникает необходимость изучения систематизации данной проблемы. Отсюда вытекает актуальность нашей темы. Исходя из этого возникает проблема исследования: как используется и на каком уровне находится использование элементов множества при изучении арифметических действий.

Тема нашей дипломной работы: «Операция над множествами как основа обучения арифметическим действиям над целыми неотрицательными числами».

Целью исследования данной дипломной работы является поиск путей выявления эффективного применения элементов множества при раскрытии конкретного смысла арифметических действий над целыми неотрицательными числами.

Исходя из цели мы поставили следующие задачи исследования:

1. Раскрыть роль использования элементов множества в обучении арифметическим действиям (т. е. роль использования предметного счета).

2. Какие требования предъявляются по обучению и по использованию наглядных пособий как элементов множества при обучении арифметическим действиям над целыми неотрицательными числами.

3. Анализировать экспериментальное исследование по проблеме выявления эффективности применения элементов множества при обучении арифметическим действиям над целыми неотрицательными числами.

Гипотеза исследования. Мы предполагаем, что использование элементов множества при изучении арифметических действий над целыми неотрицательными числами является как необходимое средство обучения, которое повышает качество знаний у детей, помогает быстрому усвоению темы.

Объект исследования: применение элементов множества в процессе обучения арифметическим действиям над целыми неотрицательными числами в начальных классах.

Предмет исследования: выявление эффективности использования элементов множеств в обучении арифметическим действиям над целыми неотрицательными числами в начальных классах..

Методы исследования: наблюдение, проведение экспериментальных уроков, интервьюирование, анкетирование.

Этапы исследования:

I этап (май – август 2006 г.). Работа над темой, подготовка материалов, изучение литературы по применению операций над множествами при обучении арифметическим действиям.

II этап (сентябрь – октябрь 2006 г.). Наблюдение, проведение экспериментальных уроков, интервьюирование.

III этап (ноябрь – декабрь 2006 г., январь – май 2007 г.). Работа над написанием диплома.

Теоретическая значимость: Определение значения использования элементов множества, полученных в процессе исследования результатов, в науке имеет большое значение. Новые знания дает совершенствовать использование элементов множества в обучении арифметическим действиям.

Практическая значимость: изученный мною вопрос по применению элементов множества при обучении поможет мне в дальнейшей учительской работе, как правильно и разумно применять элементов множества на уроках математики.

Данная дипломная работа состоит из введения, двух глав, заключения, списка использованной литературы, приложения.

Похожие публикации:

Создание проблемных ситуаций при изучении биологии
В методике организации учения школьников большое значение имеет проблемное обучение. К.Д. Ушинский считал, что в обучении серьезное внимание надо обращать на возбуждение самостоятельной мысли ребенка, на побуждение его к поискам истины. «Самостоятельность головы учащегося, - подчеркивал великий пед ...

Психологические состояния человека
Психологические состояния – "широкая психологическая категория, которая охватывает разные виды интегрированного отражения ситуации (воздействий на субъект как внутренних, так и внешних стимулов) без отчетливого осознания их предметного содержания". Психические состояния представляют собой ...

Структура профессиональной компетентности педагога
Структура профессиональной компетентности учителя может быть раскрыта через педагогические умения. Модель профессиональной готовности целесообразно строить от наиболее общих к частным умениям. Таким наиболее общим умением является умение педагогически мыслить и действовать, теснейшим образом связан ...

Возрастные особенности внимания

Возрастные особенности внимания

Внимание - это особое свойство человеческой психики. Оно не существует самостоятельно - вне мышления, восприятия, работы памяти, движения. Нельзя быть просто внимательным - можно быть внимательным, только совершая какую-либо работу.

Категории

Copyright © 2024 - All Rights Reserved - www.eduriver.ru