Алгоритмы конкретных процедур целесообразно использовать в курсе алгебры не изолированно, а в составе операционных блоков. Разумеется, большинство процедур в операционном блоке имеют алгоритмическую природу, но не все они могут получить в обучении алгоритмическое развертывание, т.е. послужить материалом для выявления компонентов понятия алгоритмов.
Например, в линии уравнений и неравенств посредством выявленных алгоритмов могут быть описаны общие черты процесса решения нескольких классов уравнений, неравенств, систем, приведенных к нормальной форме. Но для описания процесса приведения к такой форме понятия алгоритма нехватает и приходиться пользоваться понятием исчисления. Главное различие алгоритма и исчисления: алгоритм это система предписаний, обязывающих выполнить некоторое действие всякий раз, как созданы условия для его выполнения; исчисление - система разрешений на такое использование действий.
Примером исчисления служит система обычных свойств арифметических операций в применении к заданиям на приведение к нормальной форме. Если дополнительно придать однозначность пути проведения выкладок, то оператор вида «привести к нормальной форме» уже возможно использовать в формулировке алгоритма. В учебниках алгебры алгоритм, использующий такие операции, появляется уже при изучении уравнений первой степени. Например, приведено такое описание процесса решения: «Для этого нужно: 1) перенести члены, содержащие неизвестное , в левую часть, а члены, не содержащие неизвестное, в правую. 2) Привести подобные члены, разделить обе части уравнений на коэффициент при неизвестном, если он не равен нулю». Здесь выделяются операции двух типов: приведение к нормальной форме и действия с нормальной формой; алгоритм принадлежит к простейшему виду линейных двучленных конструкций.
Можно предположить, что деятельность по выделению компонентов понятия алгоритма целесообразно начинать уже на таких, простейших примерах процессов алгоритмического характера.
По мере формирования навыка применения алгоритма деятельность по его исполнению становится свернутой . Это означает, что ученики приобретают способность представить данный алгоритм как потенциально выполненный, реально его не выполняя. Исключительное значение свертки в алгоритмической линии состоит в использовании свернутого алгоритма как оператора в другом алгоритме.
Алгоритмическая линия может быть реализована посредством неявного формирования понятия алгоритма на материале традиционных процедур алгоритмического типа школьного курса алгебры. Реализация алгоритмической линии может состоять в формировании на этом материале компонент понятия алгоритма при помощи специальных приемов рассмотрения операционных блоков.
К числу таких приемов относятся: изучение двучленных алгоритмов, включающих приведение к нормальной форме и последующее преобразование нормальной формы; включение алгоритма в состав операционного блока; применение переноса для выделения из состава алгоритма метода, имеющего большую область применимости; последовательная свертка алгоритмов, обеспечивающая их использование как операторов в других алгоритмах.
Систему развертывания алгоритмической линии, использующие описанные приемы изучения операционных блоков считается основой включения ее содержания в курс школьной алгебры.
Средства теоретического обучения
Средства обучения являются важным компонентом процесса обучения, который включает взаимосвязанную деятельность преподавателя и учащихся. Эта деятельность связана с применением определенных средств — слово преподавателя, текст книги, оборудование, приборы, учебные принадлежности, наглядные пособия и ...
Обоснование
выбора игровых технологий учителем начальных классов
Выбор данной технологии в первую очередь связан с тем, что работают с детьми младшего школьного возраста, а игра занимает значительное место в первые годы обучения детей в школе. Всем хорошо известно, что начало обучения ребенка в школе - сложный и ответственный этап в его жизни. Дети шести - семи ...
Психолого-педагогические особенности формирования алгоритмических умений
тождественных преобразований
Это период ранней юности - период жизни и развития человека от 16 до 18 лет. Как правило, к концу этого периода юноши и девушки обычно достигают физической зрелости. Завершается период бурного роста и развития организма, наступает относительно спокойное время дальнейшего физического развития. Замет ...
Внимание - это особое свойство человеческой психики. Оно не существует самостоятельно - вне мышления, восприятия, работы памяти, движения. Нельзя быть просто внимательным - можно быть внимательным, только совершая какую-либо работу.