Алгоритмы конкретных процедур целесообразно использовать в курсе алгебры не изолированно, а в составе операционных блоков. Разумеется, большинство процедур в операционном блоке имеют алгоритмическую природу, но не все они могут получить в обучении алгоритмическое развертывание, т.е. послужить материалом для выявления компонентов понятия алгоритмов.
Например, в линии уравнений и неравенств посредством выявленных алгоритмов могут быть описаны общие черты процесса решения нескольких классов уравнений, неравенств, систем, приведенных к нормальной форме. Но для описания процесса приведения к такой форме понятия алгоритма нехватает и приходиться пользоваться понятием исчисления. Главное различие алгоритма и исчисления: алгоритм это система предписаний, обязывающих выполнить некоторое действие всякий раз, как созданы условия для его выполнения; исчисление - система разрешений на такое использование действий.
Примером исчисления служит система обычных свойств арифметических операций в применении к заданиям на приведение к нормальной форме. Если дополнительно придать однозначность пути проведения выкладок, то оператор вида «привести к нормальной форме» уже возможно использовать в формулировке алгоритма. В учебниках алгебры алгоритм, использующий такие операции, появляется уже при изучении уравнений первой степени. Например, приведено такое описание процесса решения: «Для этого нужно: 1) перенести члены, содержащие неизвестное , в левую часть, а члены, не содержащие неизвестное, в правую. 2) Привести подобные члены, разделить обе части уравнений на коэффициент при неизвестном, если он не равен нулю». Здесь выделяются операции двух типов: приведение к нормальной форме и действия с нормальной формой; алгоритм принадлежит к простейшему виду линейных двучленных конструкций.
Можно предположить, что деятельность по выделению компонентов понятия алгоритма целесообразно начинать уже на таких, простейших примерах процессов алгоритмического характера.
По мере формирования навыка применения алгоритма деятельность по его исполнению становится свернутой . Это означает, что ученики приобретают способность представить данный алгоритм как потенциально выполненный, реально его не выполняя. Исключительное значение свертки в алгоритмической линии состоит в использовании свернутого алгоритма как оператора в другом алгоритме.
Алгоритмическая линия может быть реализована посредством неявного формирования понятия алгоритма на материале традиционных процедур алгоритмического типа школьного курса алгебры. Реализация алгоритмической линии может состоять в формировании на этом материале компонент понятия алгоритма при помощи специальных приемов рассмотрения операционных блоков.
К числу таких приемов относятся: изучение двучленных алгоритмов, включающих приведение к нормальной форме и последующее преобразование нормальной формы; включение алгоритма в состав операционного блока; применение переноса для выделения из состава алгоритма метода, имеющего большую область применимости; последовательная свертка алгоритмов, обеспечивающая их использование как операторов в других алгоритмах.
Систему развертывания алгоритмической линии, использующие описанные приемы изучения операционных блоков считается основой включения ее содержания в курс школьной алгебры.
Условия и факторы реализации инновационного подхода к организации
воспитательной работы в школе - интернате
Инновационный подход к организации воспитательной работы в школе интернате требует глубокого и гибкого подхода к реализации многочисленных задач, стоящих перед образовательным учреждением. Всё это предопределяет необходимость его постоянного совершенствования и повышения продуктивности, зависящей о ...
Особенности формирования
лексического строя речи у детей с общим недоразвитием речи
В ходе общего развития ребенок постепенно овладевает языковыми средствами общения: происходит накопление его словарного запаса, формирование системы различных форм слов и словосочетаний. Во время появления первых слов у детей с нарушениями развития речи не имеет резкого отличия от нормы. Однако сро ...
Динамика развития профессиональных интересов студентов
Психологическую основу целенаправленного формирования профессионально значимых знаний, умений и навыков и выработки социально ценных качеств личности, составляет изучение становления и развития у молодых педагогов потребностей и мотивов педагогической деятельности. Из большого арсенала умений как к ...
Внимание - это особое свойство человеческой психики. Оно не существует самостоятельно - вне мышления, восприятия, работы памяти, движения. Нельзя быть просто внимательным - можно быть внимательным, только совершая какую-либо работу.